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It is shown that small normal perturbations in a closed steady fluid flow 
always either decrease or increase monotonically irrespective of the 
form of the walls or the character of the motion. Making use of this re- 
sult, steady motions near critical Reynolds number R are investigated in 
general form. In the general case two series of steady motions. analytic- 
ally dependent on R, intersect at the critical R. The motions of one 
series, starting from equilibrium at R = 0, are stable for R less than a 
critical value R,. and are unstable for R > R,. The motions of the second 
series, on the contrary, are stable above some critical point, are un- 
stable below it and do not exist at a certain RI < Ro. The motions of 
both series coincide at the critical point itself, and near R. their 
difference varies as (R - R,). A special case may occur if a problem per- 
mits a symmetric transformation (for example, an arbitrary displacement 
along an axis) and the perturbation which disturbs the stability is in- 
variant with respect to this transformation. Two new series of steady 
motions, analytically dependent on (R - R,)1’2, then appear above the 
critical point. The situation is exactly the same in the case of a fluid 
moving between two rotating cylinders. 

Until recently in hydrodynamic stability theory, the stability of non- 
closed flows was studied almost exclusively, efforts being directed 
mainly to the calculation of the critical Reynolds number, i.e. to the 
solution of the linear small perturbation equations. Only Landau [ 1,2 1 
has raised the question of phenomena at Reynolds numbers slightly in 
excess of the critical, and has shown that there must exist (he had in 
mind non-closed flows) unsteady periodic motion, the amplitude of which 
is proportional to (R - R,)1/2. As regards closed flows, apparently only 
the motion of a fluid between two rotating cylinders (Taylor’s problem) 
has been investigated. Taylor [ 3 1 calculated the critical Reynolds 
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number for this problem and the perturbation which breaks down the steady 
flow, and It was then shown in his experiments [ 3 1 (cf. also the work 
of Lewis [411 and in the experiments of Stuart that all the theoretical 
conclusions are correct. In his experiments it is also seen that after 
the break-down of the basic flow a new steady motion is established, 
whose intensity differs from the intensity of the basic flow by an amount 
which is proportional to (R - R0)1/2. Stuart applied the Landau concept 
to the Taylor problem and showed that, although the motion here is 
closed, the conclusions of Landau remain partially in effect and the 
theory is in excellent quantitative agreement with experiment. The im- 
pression generated is that the laws indicated by Landau must also hold 
for closed flows. 

The Taylor case, however. is not a typical case of closed flow. The 
length of the cylinders in the Taylor experiments was 800 times greater 
than the width of the space filled with fluid, and consequently it may 
be thought that the phenomena observed there should be like the phenomena 
in infinite non-closed flows. It would be very interesting to investigate 
experimentally some typical closed motion, for example the motion between 
two rotating spherical surfaces. 

In this paper, a general investigation of the nonlinear hydrodynamic 
equations is carried out for closed flows near critical Reynolds numbers, 
and it is shown that the Taylor problem is really a special case and 
that phenomena near critical points in typical closed flows look abso- 
lutely different. The method used here is a development of the method of 

[6 1. 

1. Normal perturbations. A fluid filling the volume (v), whose 
walls (S) are moving steadily with velocities Us which differ at differ- 
ent points, is considered. The walls may consist of several parts having 
the form of a body of revolution, but more complex cases, for example 
when the walls are made of a flexible ribbon moving parallel to "itselfa, 
can also be considered. It is assumed that a steady fluid motion whose 
stability should be investigated is possible under these conditions. 

We introduce a characteristic length dimension 1, a velocity u/t and 
a time Z2/v (V is the kinematic viscosity), and also a Reynolds number 

(1.1) 

where [I (') 
will be' 

is a characteristic wall velocity; the equations of motion 

v+(v~V)v=-~p-rotrotv, divv = 0, vl,=RU, (1.2) 
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Here U8 designates the velocity distribution on the walls, normalized 
with a single characteristic velocity. 

Steady fluid flows will then be investigated for a given form of the 
velocity distribution on the walls and for various Reynolds numbers. 
Such steady flows satisfy the equations 

VP-;-rotrotu-I-(U.O)U=O, div U = 0, u js = liU, (1.3) 

To investigate their stability, we shall consider the perturbation 
flow 

(v, p’> = (U, P> --i- (u, P> (1.4) 

If this is substituted into (1.2) and if (1.3) is taken into account, 
and if subsequently, considering the perturbation to be small, quadratic 
terms in the perturbation are neglected and 

{u, p} - e-“t (1.5) 

is assumed, the linear equations for the normal perturbations of the 
steady motion U(R) 

_ Au $ L[“; U(R)] = - au + vp + rotrotu -‘- (U*v)u -1 (u.v)U = 0 

div u = 0, uj, = 0 (1.6) 

are then obtained. 

For simplicity we will consider the eigenvalues X to be prime numbers*. 

The solution of problem (1.6) then gives (for a 
finite sequence of normal perturbations and the 
spond to them 

UC%, pa; Lx (a =o, 1,2., 

finite volume) an in- 
decrements that corre- 

(1.7) 

l The case of divisible numbers x is of no particular interest. since 
in this problem 
(1 + at)c-*t* 

nadjointm perturbations which vary with time as 
etc. will not be possible (they are possible, in prin- 

ciple, for non-self-conjugate L). The fact is that the operator L 

transforms analytically into a self-conjugate form as R + 0. 

Here, the letter L in the symbol L[$; xl designates an operator 
which acts on the function-argument C#J, and x is a function on which 
L depends as a parameter. 
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numbered in the order of increasing real parts of the number A. Fhysic- 
ally it is clear that this sequence will be complete: any small per- 
turbation u must be made up of normal perturbations which vary expo- 
nentially with time. 

Because problem (1.6) is non-self-conjugate, the normal perturbations 
are non-orthogonal among themselves and the decrements may be caplex. A 
problem, conjugate with (1.6), is obtained if the equations which are 

complex conjugates of (1.6) are multiplied by the variable vector Y and 
integrated over the volume, and if the derivatives are interchanged from 
U* to v using the Gauss theorem, and the factor multiplying u* is set 
equal to zero. There is then obtained 

-2~*v+.L+[v; U(~)]=-~~v+~~~rotrotv-(U.~)v~ v(U.v)= 0 
divv = 0, qs=o (1.8) 

Problem (1.8) also has a complete sequence of solutions (conjugate 
normal perturbations) 

Vat Qat 2.‘; (a = 0, 1, 2. I *) U-9) 

whose decrements are complex conjugates of the decrements (1.71. these 
solutions do not have a straightforward physical meaning, but they are 
orthogonal to the normal perturbations (1.7) and are necessary to deter- 
mine the coefficients of the expansion of an arbitrary perturbation in 
terms of the normal perturbations. Indeed, from (1.6) and (1.8) we obtain 

C&P - ha) s v; . u,dV = 1 (v;L[u,]--L+[v; ]u~}dP= 0 

Hence, with appropriate normalization 

s v’; *u,dV = 8pa (1.10) 

Every incompressible flow which vanishes at the walls must he expanded 
in a series of the form 

(U, p>= 2 aa {Uaf Pa), a, = v:lNw s 
a 

(1.11) 

Investigation of the stability reduces to calculating the decrements 
X. The steady motion is stable with respect to the normal perturbation 
(a) if Ra h, > 0. 

2. lhe basic secies of steady flows. For given geometric con- 
ditions and a given velocity distribution on the walls, there will exist 
a series of steady motions which vary continuously with Reynolds number 
and for R = 0, i.e. for stationary walls, reduce to equilibrium. It is 
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easily shown that no steady motion whatever is possible for stationary 
walls except the basic one U(0) = 0. Indeed, for R = 0 it follows from 
(1.2) that 

Thus, if the motion is steady, then 

rotv r- 0, divv = 0, vi,==0 

and, consequently, v = 0. Ihis argument even demonstrates that the 
nmotionn U = 0 is stable, which also follows from bations (1.6). For 
U= 0 these take the form 

-~hu+Vp+rotrotu==0, divu = 0, u Ia,= 0 (2.1) 

'lhis boundary-value problem is self-conjugate 

us(O)* ]'a (0); L (0) 

are real and 

so that its solutions 

(2.2) 

h, (0) s Ua2dV = s (rot u,)%lr > 0 

For small R the motions of the basic series can be represented in the 
form of a series in R 

Substituting in (1.3) gives the equations 

VP, +rotrotU, = 0, divU, = 0, U11, = U, 
n-1 

VP, -j-rot rotI?, = - 2 (U,*'t7)Un-_k 

b-l 

divU, = 0, UT& = 0 (n>l) (2.4) 

solving which permits all of the U, to be determined successively. Ihe 
series (2.3) can be analytically continued to the first singular point 
lying on the real axis R. It will be further assumed that either there 
is no such point at all or it lies at a very large value of R, so that 
in the whole region of Reynolds numbers of present interest the motions 
of the basic series will exist. It will be possible later to obtain some 
information on the singular point at which the basic steady motions 
cease to exist. 
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For each motion of the basic series its own normal perturbations and 
its own decrements 

will exist. 

ua (R), pa (R), L(R) 

We shall show that all of these perturbations 
are real. Let the realness already be proved for 
For R + 5 we shall assume 

(2.5) 

and their decrements 

some Reynolds number R. 

h, (R + E) = h, + glb’l’ + g2Q2) + . . . 
u, (R + E) = ua -1 E;u(l) + E2uC2) + . . . 

(2.6) 

and an analogous expression for the pressure. ‘lhe basic motion for R + 4 
will be 

u (A+ E) = u (R) + @” + L@2) + . . . 

Substituting in (1.6) gives, for terms containing 5” 

h&(n) -L [p u (R)] + h%, = - [P-lhl(l) + . . 1 + 

- [ (ti’“’ * v) II, + . . . -+ (U(l) * v) lP1)] - 

- [ (ua . yy) utn) + . . . + (lP1) * v) W] 

(2.7) 

h(l) uc-u] _ 

(2.8) 

Multiplying this equality by the conjugate normal perturbation v4. 
(which, by assumption, is real) and integrating, we shall obtain by 
virtue of (1.8) 

A(*) = s va {. . .} dV (2.9) 

‘lhe dots in the brackets here designate the right-hand side of Equa- 
tion (2.8). 

Each of the u( ‘) can be expanded in terms of the perturbations (2.5): 

0) = 2 bp%p (R) (2.10) 
Pea 

(‘Ihe exclusion of terms with p = a is equivalent to a change or 
normalization.) If such an expansion is substituted into (2.81, multiplied 

by some VP for /3 f a and integrated, then there is obtained (2.ll) 

(hp - ha) bptn) = 
s 

vp. (U’“’ .@u,dV + 5 Vp.(U,.~)W)dV + 

n-1 n-1 

+ 2 ii(“)bJ”) + 2 2 {Svp. (u’“-“’ * xy) U.&-w $- s vp’(uu’ yy) u’“-“W) bYCk) 
k=l k=l ~$:a 
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From (2.9) and (2.11) it is seen that it is 
successively all of the terms of the expansion 
will be real. Because the normal perturbations 

possible to determine 
(2.6) and all of them 
are real for R = 0, they 

will be real throughout the entire region of existence of the basic 
steady motions. Consequently, if a fluid moves steadily in a closed 
volume and the motion belongs to the basic series, then any normal per- 
turbation either decreases or increases monotonically for any Fkzynolds 
number. 

3. ?he critical Reynolds number. It has been shown above that 
the basic steady motion for stationary walls (equilibrium) is stable. J3y 
continuation the motions of the basic series for sufficiently small R 
will also be stable. There exist cases for which the motion remains stable 
for all R, so that all of the h,(R) are always positive. 

Cases are referred to here, for example, in which the walls move with 
an angular velocity, rotating about a comnon axis: 

US= nxr, n = const, n3 = 1 (3.4) 

In the basic steady motion the fluid will then rotate as a solid body, 
i.e. 

u = IC nxr (3.2) 

To investigate stability here it is simplest to transfer to a system 
of reference which rotates together with the walls. In Equations (1.6) 
it is then necessary to assume u = 0 and to add the centrifugal force 
(which is the gradient of a scalar) and the Coriolis force. As a result 
we obtain 

Au--f -rotrotu+ 2Ruxn = 0 

div u = 0, I1 js = 0 

Hence, the equality 

?+~W+ rotu/2dV-22RnSdx udV 

follows and consequently 

(3.3) 

Reh = 5 jro~u1~dTi/ [ luj2dV> 0. (34 

lzhus, solid rotation is stable for all R. 

ht it is also known that for a fluid which fills the space between 
two coaxial cylinders rotating with equal angular velocities there exists 



Nonlinear phenomena in closed floms 373 

under certain conditions a critical Reynolds number R for which the least 
decrement vanishes. Although existing calculations are concerned with in- 
finite cylinders, experiments with cylinders of finite length indicate 
that for some R, the motion does, in fact, become unstable. 

Thus, there can exist series of steady motions which are stable for R 

less than a certain R, and unstable for R >‘R,. We shall investigate 
steady motions near the critical point R, in ihich 

A, (R,) = 0, A= (&I) > 0 (a > 0) 

For simplicity we shall consider that all of the X,(R,) 

4. Ihe regular critical point. Ihe critical point 

(3.5) 

are different. 

R, can be a 
_ 

regular (non-singular) point of the basic flow. We shall examine the ex- 
pansion of the basic flow about some R, assuming for the present that R 

is not a critical point 

U(R+E)=U(R)+VJI+..* (4.1) 

The divergences of all terms of this expansion must be equal to zero, 
and at the walls it is necessary to have 

U (R + E) 18 = (R + E) Us (4.2) 

so that 

UI IS = US U, IS = 0 (n > 1) 

Series (4.1) must satisfy Equations (1.31, by virtue of which the 
sequence of boundary-value problems 

n-1 

L WI1 = 0, L[U,]=- ~(U&Un--hzF, (n > 1) (4.3) 
Ii=1 

is obtained. 

To make the boundary conditions homogeneous for n = 1 also, we shall 
assume 

u, = R-1U (R) + U,’ (4.4) 
Then 

L[U,‘] = -R-l(U.o)UzF,, Ul' Is = 0, div U1’ = 0 (4.5) 

Multiplying both sides of Equations (4.3) and (4.5) by one of the con- 
jugate normal perturbations (1.9) and integrating, it is possible to ob- 
tain for any n the equality 

h, 1 v,*U,dV = 1 v,iF,dV (4.6) 
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(For n = 1, Un' should be on the left.) The integrals on the left sides 
of these equalities are the Fourier coefficients of the expansions of Un 
in terms of ua; therefore, if none of the decrements are equal to zero, 
then 

u, = 6,1K-1U (R) + 2 uaL?s v,.F,clV (4.7) 
a 

he formulas lose their meaning if R is equal to the critical value 
R,, because then A, = 0. All of the rest of the decrements, however, are 
not equal to zero at the critical point and, consequently, all terms of 
the series (4.7), except those equal to zero, are continuous at R,. Be- 
cause the basic flow is also continuous at a regular point, it is clear 
that the zero term of the series (4.7) for R = R, will be 

With this reservation, Formula (4.7) retains meaning at the critical 
point also, where, consequently 

?bo = 0, s vo. F,dV r= 0 (n = 1, Z,...) (4.9) 

For n = 1 relation (4.9) has the form 

P P 
p&J’~)UdV= potv,(dSxU,)=O (4.10) 

as is easily verified with the help of (1.3) and (1.8). 

We shall show that near a regular critical point there exists a second 
series of steady motions for which this point is also not a singular 
point. ‘lhe motions of both series coincide at the same critical point. 
We shall seek a second solution in the form 

v(~,+E)=U(~o+~)+cP=U(~,)-i-~[Ul(~,)-ccplli- 

+E”rw4J+cpzl+... 
div rg, = 0, (Pn IS = 0 (4.11) 

Substituting in equations of the form of (1.3) and taking (4.3) into 
consideration gives 

J5 [cpll = 0 (4.12 

L&21 = - C(U1*V) v1-k (v,*v)U1 + (%*V)'pJ = f* 
.,,....*.................a... 

n-1 

L [e] = - 2 {(uk”J) (pn-k + (‘gk’v.)Un-k -i- (‘pk’d (Pn-kj = fn 

k=l 
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where the operator L is constructed from (1.6) with the help of U(R). 
From (4.12) it follows that 

'p1= hml) (4.13) 

with an unknown constant b,. For n > 1, by virtue of the characteristics 

of conjugate operators and the fact that at the critical point A, = 0, 

we obtain 

s vo PO) L [(Pnl dT/’ = \ L’ [v. (R,)] . cp,dV = 0 

from which there follows the solvability condition for Equations (4.12) 

s 
v,.f,dV = 0 (4.14) 

For n = 2, after having substituted in f, in place of $I its value 
(4.131, we obtain from (4.14) 

The choice of b, = 0, to be sure, leads again to the basic series; we 

shall take 

b, = -,s VoW1'V) uo + (uo.v) WW~v,~(~,~v)~,~~ (4.16 

which is possible if 

~vo~(~o~V)~o~~#O (4.17) 

Ihe singular case, in which this integral vanishes, will be investi- 

gated in Section 6. 

For such a choice, Equation (4.12) will have a solution for n = 2 to 

which u0 multiplied by an arbitrary constant b, must be added. It is 

easily seen that for n = 3 the constant b, enters linearly in the solv- 

ability condition (4.14) so that it is siiply determined and will be 

real. After this, Equation (4.12) can be solved for n = 3, etc. Con- 

sequently, near a regular critical point a solution of the form 

V(R)=U(R)$-b,(R-Ro)uo+... (4.18) 

will exist. 

'Ihe existence of such a solution beyond the critical point is not 

surprising; the basic steady motion there is unstable and, if a perturba- 

tion appears in it, a new steady motion (4.18) is eventually established. 



376 V.S. Sorokin 

It is stranger that the motions of the second series, as is evident from 

(4.181, are also possible below the critical point. Because the new 
motions are stable there, it is natural to think that the motions of the 
second series will be unstable for R < R,. To show this, we shall write 
the equations for the normal perturbations of the second steady flow 
(4.18), which are analogous to bations (1.6) 

-/.&jlw-t_L[w, V(R)]=-~w+~“$-rotrot\Yi_-(V.~)W+(W.~)V=O 

div w = 0, wls=O (4.19) 

For small {, V can be replaced by its approximate value (4.18), after 
which we obtain 

-pwi_L[w, u(R,)]=-E;I(u~.~-)wf(w~~)U~]- 

-Ebd(qj*V)~~i- b=v)u*l (4.20) 

We shall calculate that p which is close to zero, i.e. we shall find 
a ws close to uO. For this we shall replace w by u0 in the right-hand 
side, and on the left-hand side we shall assume 

w = uo + c %UY (4.21) 
-&a 

where the a will be small quantities of first order. Then, after multi- 

plying (4.20) by v~tR*) and integrating, we obtain to within c, taking 
(1.10) into consideration 

~0 = E @I i ~o+qv)u,d~ ‘- ~v,WJ~WJ, i- (u~.v)U,I~~) (4.22) 

If the value of b, from (4.16) is substituted here, we finally obtain 

Po(Ro t- %) = -_ECvo*rtu,*V)uo -t- (ulVVVJ,l~l/ (4.23) 
L 

This decrement must be compared to the decrement of the basic motion 
~~(R* + e>, the calculation of which is carried out as above, except 
that it is necessary to set b, = 0 in (4.20) and (4.22). Thus 

h, (R, i-- E) = -+ g \ v. * r@J, * 77) uo + (UO’ VJ) Ull dl/’ (4.24) 

and consequently 

E”o(~,$_~)=--~o(~*+~)-t-.... (4.25) 

This means that where the basic motions are stable the motions of-the 
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second series are unstable and vice versa. Consequently, the intersection 
of two regular series of steady solutions occurs at a regular critical 
point with a change of stability. 

5. Ibe limiting critical point. Ihe investigation which was 
conducted shows that the flows are stable above the critical point R, in 
all normal cases for which the integral (4.17) is not equal to zero, i.e. 
there will exist only steady motions of the second series which can also 
exist below the critical point, where they will be, however, unstable. 
In Section 2 it was shown that there are no steady motions whatsoever for 
R = 0 except the basic one U = 0. Hence it follows that the motions of 
the second series must cease to exist for some R, < R,.* 

We shall show that this can occur if R, is a branch point of the 
second series of motions about which V(R) is expanded in powers of 

q = (R - RI)‘/2 (5.1) 

For R < R, such a solution becomes imaginary, i.e. it ceases to exist 
physically. Let 

v(R,+rl’)=V,$-11V,+r12V,i_... (5.2) 

(and analogously for the pressure). It is obvious that 

divV, - 0, V,\, = R,U,, V21s = U,, V,(, = 0, n#2 (5.3) 

‘lhe equation of form (1.3) for terms which contain 7 gives 

L (V,; V,) = 0 (5.4) 

This means that one of the decrements must be zero at the limiting 
critical point. In our case it can be either pO(Rl) = 0 oc p,(R,) = 0. 
Assuming the latter for definiteness, we obtain 

v1 = nlulwl) (5.5) 

where al is for the present an unknown constant. 

Further, for terms which contain 7 *, we obtain 

L (Vz; V0) = - (V1.V) v, (5.6) 

If we assume here that V, = RIB ’ V. + V2’., there is obtained a bound- 
ary-value problem with the homogeneous boundary conditions 

* Cf. the observation of Landau in [ 2, Sect. 27 I. 
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LIV,‘, v,t = -~~l(v~.~)v~-(vl.~)vl, V,’ /s = 0 (5.7) 

It is solvable only when its right-hand side is orthogonal to the 
conjugate perturbation vlU?,), i.e. when 

n,“H, VI * 
s 

(u,. 77) u,dV = - 
s 

Vl ’ (V, * V) V,dV (5.8) 

‘lhe integral on the right-hand side here is not equal to zero, be- 
cause otherwise a solution expanded in powers of (R - RI) would exist. 
‘lhus, from (5.8) it is possible to determine that u1 &GO and near R, 
motions of the second series will have the form 

v = V” -j- (R- x,)‘~~n,u,(R,) 

We shall not examine the rest of the terms of 

‘- . . . (5.9) 

this expansion. 

Without further investigation it is not possible to exclude the 
possibility that the basic series of steady motions can also have a 
limiting point for some R,, above which there will be no steady motions. 

6. lhe branch point. A singular case is obtained when, for X0= 0 

(6.1) 

From Formulas (4.16) and (5.8) it is seen that R, can be neither a 
regular critical point nor a limiting point. lhe integral (6.1) can turn 
out to be zero either by chance (this possibility is excluded) or by 
virtue of the symmetry of the problem; just such a solution occurs in 
the case of the motion of fluid between two infinite cylinders. Here, 
the syrnnetry of the problem permits any displacement along the axis of 
the cylinders, and therefore the normal perturbations u. and v. depend 
on the coordinate z as cos kz or sin kz, where z is measured along the 
axis of the cylinders. Each of the sumned terms in the integral (6.1) 
will contain the product of three such functions and, consequently, will 
be equal to zero, In the same problem, as is the case generally in prob- 
lems with cylindrical symnetry, the normal perturbations depend on the 
angle qb which is measured around the axis of symmetry as cos mq5 or 
sin mg5, m = 0, 1, 2, . . . . In the Taylor problem m turns out to be equal 
to zero for the perturbation which disturbs the steady motion. But if in 
some problem the stability were disturbed for m f,O, the integral (6.1) 
would then contain three factors of the form cos m# or sin m#, and a 
singular point would also be obtained. 

We shall show that if Equation (6.1) is satisfied at the critical 
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point and if solutions of the basic series expanded in integral powers 
of CR - R,) exist for this near the critical point, then two new series 
of steady motions expanded in integral powers of 

rj = -+(I$ - I&J/~ 

appear at this point. 

These new solutions must have the form 

V(R)=U(R)+g=U,-t_~~1-ts2[U1_i-~J;]_t~3~)3-i-... (6.2) 

9nIs = 0, div +, L= 0 

and they must satisfy equations analogous to (1.3). For the terms of 
first order in q we obtain 

UsI: Cl) = 0 (6.3) 

Hence 

*1= wI3(&f 

The equations for the terms of second order will be 

L($,; G) = -(S1 * V)%= -%2(% * V)wl 

(64 

(6.5) 

and their solvability condition 

s 
vg s fu, * V)u,dV = 0 

is automatically satisfied by virtue of (6.1). Their solution will have 
the form 

$2 = %% + @2% (6.6) 

where al remains undetermined and a2 is a new unknown constant. Finally, 
in the third order we obtain the equations 

LN3; w = -&I. O)W, t- %I-I(U1 -I-&) VI 91 (6.7) 

into the right-hand side of which Expressions (6.4) and (6.6) should be 
substituted. Their solvability condition (orthogonality of the right-hand 
side to ~a) will be 

aIs vo[(u**V)xz + (x2 * V')%l~W 
s 

(6.8) 

-r-%\ vo* E&t. cr)U, +@J, * TJ)u(@q- zn,az. vo '(UO * pqu#P = 0 
s 

The last of the surmned terms will be here equal to zero by virtue of 
(6.1), and a nonzero solution for al will be 



380 V.S. Sorokin 

2=-- 
vo-r(uo . V) U, + PI-v)uoldV 

a1 
vo-Nuo.v)x, + (x2.v)uoldV 

(6.9) 

etc. ‘lhus, at R, solutions of the form 

appear. 

v = Ufa,(R--RO)‘ho$-... (6.10) 

It is natural to call such a kind of critical point a branch point. 
It is easy to show that the least decrements of the motions (6.10) will 
be X, = f c(R- R,)‘/2 + . . . . therefore only one of these motions is 
stable. 

Just such a case was experimentally investigated by Taylor [5 1. The 
fluid was between two very long coaxial cylinders which were rotating 
with equal angular velocity, and the torque operating through the fluid 
on one of the cylinders was measured. In this case the torque was 
strictly proportional to R for the basic flow. On the same experimental 
curve, which gives the torque as a function of R, a break is clearly 
seen at the critical point R,. An additional torque which appears above 
the critical point apparently is actually proportional to (R - R,)“2. 
It should be kept in mind that Taylor’s cylinders were of finite length 
so that, strictly speaking, the critical point should be regular. The 
second steady solution and the additional torque with it also must differ 
from the basic one by a quantity which is proportional to (R - Ro), but 
with a very large coefficient of proportionality. It is difficult to dis- 
tinguish such a curve from the parabola (6.10). There exists a qualita- 
tive difference between a regular point and a branch point: at a branch 
point the second solution exists only for R > R,, whereas at a regular 
point it is also possible for R < R, although it is unstable there. If 
decreasing the Reynolds number, one passes carefully through a regular 
critical point, it is then possible to retain the second flow for R < R, 
also. At a branch point this is absolutely impossible. In the experiments 
of Lewis apparently, just a regular point was observed, because he says 
that Awhen the velocity was gradually decreased, vortices remained until 
this velocity took a value smaller than that for which they appeared” 
[41. 
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